NEW YORK STATE DEPARTMENT OF HEALTH

Fact Sheet — March 2010

Fecal Incident Response Recommendations for Pool and Spray Ground Staff*

What do you do when you find poop in the pool?

*This Fact Sheet is consistent with CDC's Healthy Swimming recommendations. For more information go to www.cdc.gov/healthywater/swimming/

- These recommendations are for responding to fecal incidents in chlorinated/brominated recreational water venues.
- Improper handling of chlorine-based disinfectants can cause injury. Follow proper occupational safety and health requirements when following these recommendations.
- Pool/Spray Ground Closures: Fecal incidents are a concern and an inconvenience to both pool/spray ground operators and patrons. Operators should carefully explain to patrons why the pool/spray ground needs to be closed in response to a fecal incident. Understanding that closure is necessary for proper disinfection and protection of the health and safety of patrons is likely to promote support rather than frustration. Pool/spray ground closures allow chlorine to do its job — to kill germs and help prevent recreational water illnesses (RWIs).

Important background info...

WHAT ARE RECREATIONAL WATER ILLNESSES (RWIs)?

What is the first thing that pops into your head when you think about water safety? Drowning? Slipping? Lightning? All good answers, and all are very important. But, did you know that germs can contaminate swimming water? These germs cause RWIs that have made many people sick.

RWIs are caused by germs such as "Crypto" (KRIP-toe), short for *Cryptosporidium*, *Giardia* (gee-ARE-dee-uh), *E. coli* 0157:H7, and *Shigella* (Shi-GEL-uh).

HOW ARE RWIS SPREAD?

RWIs are spread by swallowing pool or spray ground water that has been contaminated with fecal matter. How? If someone has diarrhea, that person can easily contaminate the pool/spray ground. Think about it. Pool/spray ground water is shared by every swimmer. Really, it's communal bathing water. It's not sterile. It's not drinking water.

The good news is that germs causing RWIs are killed by chlorine. However, chlorine doesn't work right away. It takes time to kill germs and some germs like Crypto can live in pools for days. Even the best maintained pools can spread illness.

SHOULD ALL FECAL INCIDENTS BE TREATED THE SAME?

No. A diarrheal fecal incident is a higher-risk event than a formed-stool incident. With most diarrheal illnesses, the number of infectious germs found in each bowel movement decreases as the diarrhea stops and the person's bowel movements return to normal. Therefore, a formed stool is probably less of a risk than a diarrheal incident that you may not see.

A formed stool may contain no germs, a few, or many that can cause illness. You won't know. The germs that may be present are less likely to be released into the pool/spray ground because they are mostly contained within the stool. However, formed stool also protects germs inside from being exposed to the chlorine in the pool/spray ground, so prompt removal is necessary.

Germ Inactivation Time for Chlorinated Water*

Germ	Time
<i>E. coli</i> O157:H7 Bacterium	Less than 1 minute
Hepatitis A Virus	About 16 minutes
<i>Giardia</i> Parasite	About 45 minutes
Crypto Parasite	About 15,300 minutes or 10.6 days [†]

SHOULD YOU TREAT A FORMED FECAL INCIDENT AS IF IT CONTAINS CRYPTO?

No. In 1999, pool staff volunteers from across the country collected almost 300 samples from fecal incidents that occurred at water parks and pools. CDC then tested these samples for Crypto and *Giardia*. None of the sampled feces tested positive for Crypto, but *Giardia* was found in 4.4% of the samples collected. These results suggest that <u>formed</u> fecal incidents pose only a very small Crypto threat but should be treated as a risk for spreading other germs (such as *Giardia*). Remember a diarrheal fecal incident is considered to be a higher-risk event than a formed-stool fecal incident.

^{* 1} parts per million (ppm) or mg/L free chlorine at pH 7.5 or less and a temperature of 77°F (25°C) or higher.

[†] Shields JM, Hill VR, Arrowood MJ, Beach MJ. Inactivation of *Cryptosporidium parvum* under chlorinated recreational water conditions. J Water Health 2008;6(3):513–20.

CDC. Prevalence of Parasites in Fecal Material from Chlorinated Swimming Pools — United States, 1999. MMWR 2001;50(20):410–2.

What do I do about...

formed stool in the pool or spray ground?

Formed stools can act as a container for germs. If the fecal matter is solid, removing the feces from the pool/ spray ground without breaking it apart will limit the degree of pool/spray ground contamination. In addition, RWIs are more likely to be spread when someone who is ill with diarrhea has a fecal incident in the pool or spray ground.

diarrhea in the pool or spray ground?

Those who swim when ill with diarrhea place other swimmers at significant risk for getting sick. Diarrheal incidents are much more likely than formed stool to contain germs. Therefore, it is important that all pool and spray ground managers stress to patrons that swimming when ill with diarrhea is an unhealthy swimming behavior.

- 1. **For both formed-stool and diarrheal fecal incidents**, close the pool/spray ground to swimmers. If you have multiple pools/spray grounds that use the same filtration system all pools/spray grounds will have to be closed to swimmers. Do not allow anyone to enter the pool(s)/ spray ground(s) until the disinfection process is completed.
- For both formed-stool and diarrheal fecal incidents, remove as much of the fecal material as possible (for example, using a net or bucket) and dispose of it in a sanitary manner. Clean and disinfect the item used to remove the fecal material (for example, after cleaning, leave the net or bucket immersed in the pool during disinfection).
 - VACUUMING STOOL FROM THE POOL OR SPRAY GROUND IS NOT RECOMMENDED.
- 3. At facilities that use bromine disinfection, chlorine-based disinfectant must be used to treat contamination. Bromine cannot be distinguished from chlorine in water by most test kits. When responding to contamination in brominated systems, the minimum disinfection level needed will be a combination of the current bromine level **plus** the minimum chlorine level specified for the type of contamination.
- 4. Raise the free chlorine to 2 parts per million (ppm), if less than 2 ppm, and ensure pH 7.5 or less and a temperature of 77°F (25°C) or higher. This chlorine concentration was selected to keep the pool/spray ground closure time to approximately 30 minutes. Other concentrations or closure times can be used as long as the contact time (CT) inactivation value* is achieved (see next page).
- Maintain free chlorine concentration at 2 ppm and pH 7.5 or less for at least 25 minutes before reopening the pool/spray ground. In the presence of chlorine stabilizers,[†] which are known to slow disinfection, double the disinfection contact

time. Ensure that the filtration system is operating while the pool/spray ground reaches and maintains the proper free chlorine concentration during the disinfection process.

- If necessary, before attempting the hyperchlorination of any pool/ spray ground, consult an aquatics professional to determine the feasibility, the most optimal and practical methods, and needed safety considerations.
- 5. Raise the free chlorine concentration to 20 ppm^{¶,§} and maintain pH 7.5 or less and a temperature at 77°F (25°C) or higher. The free chlorine and pH should remain at these levels for at least 12.75 hours to achieve the CT inactivation value of 15,300.** Crypto CT inactivation values are based on killing 99.9% of Crypto. This level of Crypto inactivation cannot be reached in the presence of 50 ppm chlorine stabilizer, even after 24 hours at 40 ppm free chlorine, pH 6.5, and a temperature of 77°F (25°C). The Extrapolation of these data suggest it would take approximately 30 hours to kill 99.9% of Crypto in the presence of 50 ppm or less cyanuric acid, 40 ppm free chlorine, pH 6.5, and a temperature of 77°F (25°C) or higher.
- Confirm that the filtration system is operating while the water reaches, and is maintained, at the proper chlorine level for disinfection.
- Backwash the filter or replace cartridge or DE media after reaching the CT inactivation value. Be sure the effluent is discharged directly to waste and in accordance with state or local regulations. Do not return the backwash through the filter.
- 8. Allow patrons back into the water only after the required CT inactivation value has been achieved and the free chlorine and pH levels have been returned to the normal operating range (0.6–5.0 ppm when pH is 7.2–7.8).

Establish a fecal incident log. Document each fecal incident by recording date and time of the event, whether it involved formed stool or diarrhea, and the free chlorine and pH levels at the time or observation of the event. Before reopening the pool/spray ground, record the free chlorine and pH levels, the procedures followed in response to the fecal incident (including the process used to increase chlorine levels if necessary), and the contact time.

^{*} CT inactivation value refers to concentration (C) of free chlorine in ppm (or mg/L) multiplied by time (T) in minutes at a specific pH and temperature.

[†] Chlorine stabilizers include compounds such as cyanuric acid, dichlor, and trichlor.

[¶] Many conventional test kits cannot measure free chlorine levels this high. Use chlorine test strips that can measure free chlorine in a range that includes 20–40 ppm (such as those used in the food industry) or make dilutions with chlorine-free water when using a standard DPD test kit.

[§] If pool operators want to use a different free chlorine concentration or inactivation time, they need to ensure that CT inactivation values always remain the same (see next page for examples of how to accomplish this).

^{**} Shields JM, Hill VR, Arrowood MJ, Beach MJ. Inactivation of *Cryptosporidium parvum* under chlorinated recreational water conditions. J Water Health 2008;6 (3):513–20.

^{††} Shields JM, Arrowood MJ, Hill VR, Beach MJ. The effect of cyanuric acid on the chlorine inactivation of Cryptosporidium parvum. J Water Health 2008; in press.

Pool and spray ground disinfection time...

How long does it take to disinfect a pool or spray ground after a fecal incident? This depends on what type of fecal incident has occurred and at which free chlorine levels you choose to disinfect the pool or spray ground. If the fecal incident is formed stool, follow Figure 1, which displays the specific time and free chlorine levels needed to inactivate *Giardia*. If the fecal incident is diarrhea, follow Figure 2, which displays the specific time and free chlorine levels needed to inactivate Crypto.

Figure 1 Giardia Inactivation Time for a Formed-Stool Fecal Incident

Free Chlorine Level (ppm)	Disinfection Time*
1.0	45 minutes
2.0	25 minutes
3.0	19 minutes

^{*} These closure times are based on 99.9% inactivation of *Giardia* cysts by chlorine at pH 7.5 or less and a temperature of 77°F (25°C) or higher. The closure times were derived from the U.S. Environmental Protection Agency (EPA) Disinfection Profiling and Benchmarking Guidance Manual. These closure times do not take into account "dead spots" and other areas of poor pool water mixing.

Figure 2 Crypto Inactivation Time for a Diarrheal Fecal Incident

Free Chlorine Level (ppm)	Disinfection Time* [†]
10	1,530 minutes (25.5 hours)
20	765 minutes (12.75 hours)
40	383 minutes (6.5 hours)

^{*} Shields JM, Hill VR, Arrowood MJ, Beach MJ. Inactivation of *Cryptosporidium parvum* under chlorinated recreational water conditions. J Water Health 2008;6(3):513–20.

[†] At pH 7.5 or less and a temperature of 77°F (25°C) or higher.

The **CT** inactivation value is the concentration (C) of free chlorine in ppm multiplied by time (T) in minutes (CT inactivation value = C x T). The CT inactivation value for *Giardia* is 45 and the CT inactivation value for Crypto is 15,300 (pH 7.5 or less and a temperature of $77^{\circ}F$ [25°C] or higher). If you choose to use a different free chlorine concentration or inactivation time, you must ensure that the CT inactivation values remain the same.

For example, to determine the length of time needed to disinfect a pool after a diarrheal incident at 15 ppm, use the following formula: $C \times T = 15,300$.

Solve for time: $T = 15,300 \div 15 \text{ ppm} = 1020 \text{ minutes or } 17 \text{ hours.}$ It would take 17 hours to inactivate Crypto at 15 ppm.

